Composite Dirac liquids: parent states for symmetric surface topological order
نویسندگان
چکیده
We introduce exotic gapless states—‘composite Dirac liquids’—that can appear at a strongly interacting surface of a three-dimensional electronic topological insulator. Composite Dirac liquids exhibit a gap to all charge excitations but nevertheless feature a single massless Dirac cone built from emergent electrically neutral fermions. These states thus comprise electrical insulators that, interestingly, retain thermal properties similar to those of the non-interacting topological insulator surface. A variety of novel fully gapped phases naturally descend from composite Dirac liquids. Most remarkably, we show that gapping the neutral fermions via Cooper pairing—which crucially does not violate charge conservation—yields symmetric non-Abelian topologically ordered surface phases captured in several recent works. Other (Abelian) topological orders emerge upon alternatively gapping the neutral Dirac cone with magnetism. We establish a hierarchical relationship between these descendant phases and expose an appealing connection to paired states of composite Fermi liquids arising in the half-filled Landau level of two-dimensional electron gases. To controllably access these states we exploit a quasi-1D deformation of the original electronic Dirac cone that enables us to analytically address the fate of the strongly interacting surface. The algorithm we develop applies quite broadly and further allows the construction of symmetric surface topological orders for recently introduced bosonic topological insulators.
منابع مشابه
Dual Dirac Liquid on the Surface of the Electron Topological Insulator
The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. We discuss a non-Fermi liquid gapless metallic surface state of the topological band insulator. It has an odd number of gapless Dirac fermions coupled to a noncompact Uð1Þ gauge field. This can be viewed as a vortex dual to the conventional Dirac fermion surface state. This sur...
متن کاملHalf-filled Landau level, topological insulator surfaces, and three-dimensional quantum spin liquids
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. We synthesize and partly review recent developments relating the physics of the half-filled Landau level in two dim...
متن کاملThermoelectric Transport Signatures of Dirac Composite Fermions in the Half-Filled Landau Level
The half-filled Landau level is expected to be approximately particle-hole symmetric, which requires an extension of the Halperin-Lee-Read (HLR) theory of the compressible state observed at this filling. Recent work indicates that, when particle-hole symmetry is preserved, the composite fermions experience a quantized π-Berry phase upon winding around the composite Fermi surface, analogous to D...
متن کاملTime-Reversal Symmetric U(1) Quantum Spin Liquids
The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. We study possible quantum Uð1Þ spin liquids in three dimensions with time-reversal symmetry. We find a total of seven families of such Uð1Þ spin liquids, distinguished by the properties of their emergent electric or magnetic charges. We show how these spin liquids are related t...
متن کاملExplicit Derivation of Duality between a Free Dirac Cone and Quantum Electrodynamics in (2+1) Dimensions.
We explicitly derive the duality between a free electronic Dirac cone and quantum electrodynamics in (2+1) dimensions (QED_{3}) with N=1 fermion flavors. The duality proceeds via an exact, nonlocal mapping from electrons to dual fermions with long-range interactions encoded by an emergent gauge field. This mapping allows us to construct parent Hamiltonians for exotic topological-insulator surfa...
متن کامل